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Abstract—Genes involved in cancer susceptibility and progression can serve as templates for searching protein networks for novel cancer genes. To 

this end, we introduce a general network searching method, MaxLink, and apply it to find and rank cancer gene candidates by their connectivity to 

known cancer genes. Using a comprehensive protein interaction network, we searched for genes connected to known cancer genes.  First, we compiled 

a new set of 812 genes involved in cancer, more than twice the number in the Cancer Gene Census. Their network neighbors were then extracted. This 

candidate list was refined by selecting genes with unexpectedly high levels of connectivity to cancer genes and without previous association to cancer. 

This produced a list of 1891 new cancer candidates with up to 55 connections to known cancer genes. We validated our method by cross-validation, 

Gene Ontology term bias, and differential expression in cancer versus normal tissue. An example novel cancer gene candidate is presented with 

detailed analysis of the local network and neighbor annotation. Our study provides a ranked list of high priority targets for further s tudies in cancer 

research. Supplemental material is included. 
 

Index Terms— DE Differential Expression score, Ensembl, Funcoup links, GO Gene Ontology, HPA Human Protein Atlas, Maxlink, RPA1. 

——————————      —————————— 

1 INTRODUCTION                                                                     

he function of a protein can be expressed in terms of its 
interactions with other molecules. All interactions 
between all proteins define the ―protein interactome,‖ i.e. 

the complete interaction network of the proteins of an 
organism. These networks form the backbone of molecular 
pathways and cellular processes. Thus, the construction of 
interaction networks will shed light on many aspects of the 
dynamic and interactive function of human proteins. 
   Several efforts in reconstructing the human interactome are 
ongoing. Interactions may be measured directly with high 
throughput yeast two-hybrid or pulldown assays. 
Experimental interactions have been collected from multiple 
sources to build large interaction networks. The network can 
be augmented considerably by inferred interactions either in 
the same or from other species. The largest predicted human 
interactome is currently provided by FunCoup, which uses 
eight types of evidence and transfers interactions extensively 
from model organism orthologs. 
   The development of new therapeutics and diagnostics rely 
on the understanding of disease mechanisms. Therefore, the 
identification of novel disease-associated genes is of great 
importance. Disease genes have traditionally been found by 
genetic linkage analysis or gene association studies, but this is 
very time-consuming and costly and often fails due to lack of 
data. Particularly for complex diseases involving many genes, 
these methods are unreliable. 
   Bioinformatics methods can be used to accelerate disease 
gene discovery either based on gene annotation and sequence 
features or based on network analysis. The network-based 
methods normally connect gene networks with phenotype 
networks to infer gene-disease relationships. These works, 
however, are limited to using only direct interaction data 
and/or were only applied to rank a short list of candidate 
genes in a genomic interval. 
   Here we describe a new generic network-based approach, 
MaxLink, for predicting novel candidate members to known 
biomolecular processes and pathways. A typical application is 

the identification of new disease genes based on a set of 
known disease genes. We applied MaxLink to the human 
interactome generated by FunCoup to screen for new cancer 
genes. To seed the screen, we compiled a list of 812 known 
cancer genes, 364 from the Cancer Gene Census and 448 genes 
from text mining. 
   MaxLink assigns a score to every new candidate gene based 
on the number of links to a seed set. We show that the maxlink 
score is a useful indicator of candidate reliability by three 
types of validations: cross-validation, differential cancer 
expression, and GO term analysis. The screen resulted in 
nearly 2000 candidates of which nearly 200 are connected to 
over 10 known cancer genes. These genes have, to our 
knowledge, no clear former evidence supporting association 
with cancer. However, their network connection to cancer 
genes makes them worth particular focus when developing 
biomarkers or studying oncogenesis. As the candidate list is 
long, it makes sense to explore the top ranking genes first. 
 
2. MATERIALS AND METHODS 
2.1Retrieval of Known Cancer Genes  
The input data set of known cancer genes was collected from 
Swiss-Prot and from the Cancer Gene Census. The Swiss-Prot 
genes were identified by searching annotations in the CC field, 
which represents curated annotations and includes a 
subcategory for annotations indicating disease involvement. 
The disease annotations of the CC field were matched against 
cancer-specific terms and genes for which a match could be 
found were added to the set of known cancer genes. Genes 
and matching keywords are detailed in (supplemental Table1). 
 
2.2 GO Analysis of Known Cancer Genes  
The Gene Ontology functional term analysis was done using 
the amiGO web site. Enrichment analysis of terms in the major 
cluster (348 genes) versus UniProtKB (20,740 genes) resulted 
in a total of 231 terms with p < 10−2. This list was abbreviated 
by requiring p < 10−10 and enrichment >5, resulting in 34 GO 
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terms (supplemental Table 2). 
 
2.3 Network-based Identification of Candidate Genes  
We used the human FunCoup protein network to identify 
network neighbors to the previously retrieved input genes. 
Only links with a confidence value >0.75 were considered. 
Each candidate gene was assigned a maxlink score for ranking 
that equals the number of linked known cancer genes. 
 
2.4 Annotation Filter 
To identify genes with possible cancer annotations, the 
complete UniProt, DE, KW, CC, and FT fields as well as 
reference titles were searched for cancer-specific text terms. 
Genes with a match were excluded from the candidates list. 
Additionally, genes with a gene identifier not found in the 
current version (version 51) of Ensembl were also excluded. 
 
2.5 Connectivity Filter  
If the majority of a candidate's connections were to non-cancer 
genes, it was deemed of low cancer specificity and was 
rejected. For this analysis, we divided all genes into two sets: 
1) the known cancer genes plus all genes with any cancer 
annotation (see ―Annotation Filter‖ above) and 2) all other 
genes. The gene counts of these sets were 4953 and 12,198. 
Consequently, genes exhibiting over 2.46 times more links to 
genes not associated with cancer than to the known cancer 
genes were removed. 
 
2.6 Differential Expression in Human Protein Atlas  
We devised a score (differential expression score (DE)) for 
differential protein expression levels in 18 different cancer 
types relative to their normal tissue counterparts (see Table I) 
from the 3.0 version of the Human Protein Atlas. DE was 
calculated by subtracting the average expression in a normal 
tissue from the average expression in the corresponding 
cancer tissue for each gene and tissue. To avoid tissue-specific 
biases, raw DE values for each tissue were replaced by Z-
scores based on the expression distribution of each tissue. A Z-
score of 1 represents one standard deviation above the mean. 
Finally, the total DE for each gene was calculated by taking the 
average of all absolute DE values for all 18 tissues. 
 
2.7Analysis of Cancer-associated GO Terms  
GO terms for all genes were retrieved from Ensembl via 
BIOMART, and the terms were expanded to include all higher 
level terms. All GO terms for the set of known cancer genes 
were tested for significant enrichment (fold change) with a 
hypergeometric test. The set of cancer-associated GO terms 
was then tested for significance (p < 0.05) for subsets of the 
candidates composed of all genes having a number of linked 
known cancer genes above or equal to a cutoff defining that 
subset. Relative fold changes for subsets were subsequently 
calculated for each GO term by taking the logarithm of the 
subset fold change divided by the fold change of the same 
term for the known cancer genes. 

 

 

 

TABLE I 

EIGHTEEN CORRESPONDING CANCER AND NORMAL TISSUESIN HPA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differential expression in cancer was measured by comparing the expression in the 

cancers with the corresponding normal tissues in the HPA database. Some of the 

tissues may have been renamed in the current on-line HPA database. 
 
 
3. RESULTS 
We have developed an analysis pipeline to identify and rank 
candidate cancer genes based on their connectivity to known 
cancer genes in the FunCoup network. By ―known cancer 
gene,‖ we mean any gene with clear evidence for cancer 
involvement. To analyze the interconnectedness and 
clustering of the known cancer genes, we first explored their 
network topology. Then, using them as seeds, we extracted 
candidate novel cancer genes and refined this list by applying 
quality filters. Finally, to validate our approach, we used three 
types of independent validation tests: cross-validation, 
enrichment of cancer GO terms, and differential expression in 
cancer versus normal tissue. 
 
3.1New Compilation of Known Cancer Genes  
Our approach starts with collecting known cancer genes. In a 
previous survey, the Cancer Gene Census, Futreal et al. 
identified 364 cancer genes. By text mining Swiss-Prot for 
genes annotated to be involved in cancer, we identified 703 
genes. Merging this list with the Cancer Gene Census resulted 
in 812 unique cancer genes (supplemental Table 1). 
   To analyze this set of genes in terms of network structure, 
we examined how they cluster into interconnected modules. 
This revealed one major component with 348 members, 12 
small clusters with 2–9 members, and 429 singletons as shown 

Cancer type Normal tissue counterpart 

Breast cancer Breast 
Cervical cancer Cervix uterine 
Colorectal 
cancer 

Colon and rectum 

Endometrial 
cancer 

Endometrium 

Head and neck 
cancer 

Oral mucosa and salivary gland 

Liver cancer Liver 
Lung cancer Lung and bronchus 
Stomach cancer Stomach 
Malignant 
glioma 

Hippocampus and cerebral 
cortex (non-neuronal cells) 

Malignant 
lymphoma 

Lymph node and spleen 

Malignant 
melanoma 

Skin 

Ovarian cancer Ovary 
Pancreatic 
cancer 

Pancreas 

Prostate cancer Prostate 
Skin cancer Skin 
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in Fig. 1. Thus, 43% of the known cancer genes were 
interconnected in a single subnetwork that should represent 
processes central to cancer. To verify this, we analyzed 
enrichment of functional annotation terms in the Gene 
Ontology database relative to all human genes. We observed 
strong enrichment (>5-fold enrichment, p < 10−10) for terms 
such as DNA repair and replication, cell cycle regulation, and 
apoptosis (supplemental Table 2). This is well in line with 
known cancer-associated processes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.Network layout of known cancer genes.The connections between 
genes represent links in FunCoup with confidence >0.75. The figure was 
made using Cytoscape. For a high resolution vector picture, see 
supplemental Fig. 1. 

3.2 Screen for Candidate Cancer Genes  
 
The FunCoup network was used to retrieve 4049 potential 
candidates connected to known cancer genes by high 
confidence links. Because our aim was to find genes 
previously not associated with cancer, the list was further 
refined by a number of filters. In the first step, 1511 genes that 
had any annotation suggesting a potential association with 
cancer were removed from the list. Because FunCoup was 
built using data sets of which some were linked to earlier 
versions of Ensembl, 254 genes were removed to ensure that 
the candidates are in sync with the current version. This 
constitutes a broad filter and would likely remove genes with 
only spurious cancer association. Hublike genes might be 
spuriously linked to many known cancer genes solely because 
they have many links and not because they are involved in 
cancer. Thus, 393 genes were removed in the second step 
because they had fewer links to known cancer genes than 
expected by chance given their connectivity in the entire 
network. Such genes may have been found simply because 
they are highly connected and not because of a preferential 
association to the known cancer genes. A schematic 
representation of the analysis work flow is shown in Fig. 2. 
After all filters, a final list of 1891 candidates remained with a 
maxlink score (links to known cancer genes) between 55 and 1 
(see supplemental Table 3). 
 

 
 
 

 

 

 

 

 

 

 

 

Fig. 2.Schematic representation of analysis work flow. The number of 
genes remaining after each step is shown within brackets. 

3.3 Validation by Cross-validation  

If our method works well, it should be able to detect the 
known cancer genes in a cross-validation test. We ran 
MaxLink five times, leaving out 20% of the known cancer 
genes each time. By doing so, we were able to identify 41.7% 
of the removed genes on average. However, only 47% of the 
known cancer genes had links to other input genes; thus, the 
obtained retrieval is close to the theoretical maximum 
restricted by the network. As we cannot assess false positives 
directly, we instead looked at enrichment of the removed 
known cancer genes among the retrieved genes, i.e. their 
frequency in the retrieved set relative to their frequency in the 
entire database. The average enrichment for all removed genes 
was more than 5-fold (p < 10−25). However, this increased to 
over 12-fold for the genes with highest maxlink score (see Fig. 
3). 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Enrichment of known cancer genes in cross-validation testing of 

MaxLink method.  
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http://www.mcponline.org/cgi/content/full/M900227-MCP200/DC1
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The enrichment is the frequency of cancer genes in the 
retrieved set relative to their frequency in the entire database. 
Overall, the enrichment of cancer genes with one or more links 
is just above 5. Restricting the retrieved set to genes with a 
higher maxlink score produces a proportionally increased 
enrichment. The enrichment levels at high maxlink scores are 
somewhat variable due to small amounts of data. 
 

 
3.4 Validation by Differential Cancer Expression  
 
The Human Protein Atlas (HPA) contains protein expression 
in both normal tissues and cancers taken from a large number 
of tissues. Using these data, we calculated a normal versus 
cancer DE for the 411 candidate cancer genes with expression 
data in HPA using all 18 cancer types. 
   To examine the impact of a high maxlink score, we looked at 
the fraction of genes with DE above 1, i.e. when the differential 
expression exceeds one standard deviation on average for all 
cancer types. As seen in Fig. 4, this fraction increased for 
subsets of the candidates consisting of genes with a higher 
maxlink score and was considerably enriched compared with 
the known cancer genes and HPA as a whole. This indicates 
that candidates linked to a high number of known cancer 
genes are likely important for cancer. 
   The fraction of genes linked to a certain number of known 
cancer genes that is differentially expressed above one 
standard deviation is shown for subsets based on maxlink 
score. For comparison, the average DE values for all known 
cancer genes (dashed horizontal line) and all HPA genes (solid 
horizontal line) are shown. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Validation of method by differential cancer expression in HPA. 
    
   To investigate whether this trend is caused by a decrease of 
normal tissue expression or an increase in cancer expression, 
we plotted the absolute expression levels as a function of 
maxlink score (see Fig. 5). The overall trend is an increase of 
both normal and cancer tissue expression but with a relatively 
higher increase in cancers. Thus, the MaxLink approach can 
enrich genes differentially expressed in a wide range of 
cancers, and the maxlink score is a useful indicator of cancer 
relevance. 
 
 
 
 

   The average expression in both cancer (circles) and normal 
(triangles) tissues was calculated for candidate subsets, binned 
by maxlink score, and normalized by subtracting the average 
expression of all genes in HPA for cancer and normal tissues, 
respectively. The relative expression levels are not strongly 
correlated with maxlink score, but the difference between 
cancer and normal expression (diamonds) is. The prevalence 
of high differential expression at high maxlink scores, as seen 
in Fig. 4, thus cannot simply be explained by increased cancer 
expression or decreased normal expression. The expression 
levels are discrete as used by HPA : 1 represents none, 10 
represents low, 50 represents moderate, and 250 represents 
high expression. Expression in both normal and cancer tissues 
is generally increased for genes with higher maxlink score but 
with a relatively higher increase for cancer tissues.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.Relative protein expression levels of candidate cancer genes in 

cancer and normal tissues compared with HPA as a whole. 

 

   We noted that the average DE of the known cancer genes 
was only slightly higher than that of HPA. This can be 
explained by the fact that HPA was started with a strong 
cancer focus and is highly enriched for cancer genes. 
 
3.5 Validation by GO Terms  
 
If our candidate cancer genes would show the same GO term 
enrichment as the known cancer genes, this would give 
further support to their relevance in cancer. To investigate 
this, we retrieved all GO terms for the known cancer genes 
and tested for a significant enrichment. Of a total of 4281 
terms, enrichment greater or equal to 2-fold was significant at 
the 0.05 level for 1716 terms. 
   These cancer-associated GO terms were subsequently tested 
for enrichment in subsets of the candidate genes grouped by 
increasing numbers of links to known cancer genes. The 
average enrichment increased proportionally to the number of 
linked known cancer genes (Fig. 6), showing that genes more 
central in the cancer network are more functionally associated 
with cancer. 
 
 
 
 
 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860235/figure/F4/
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   The relative fold change of cancer-related GO terms is 
shown for candidate cancer genes linked to a certain number 
of known cancer genes. The relative fold change of each cancer 
term is the base 2 logarithm of the fold change of the subset 
divided by the fold change in the known cancer genes. A 
relative fold change above 0 means that the cancer terms are 
more enriched in the candidate subset than in the set of known 
cancer genes. Candidates linked to more than five known 
cancer genes have a fold change of cancer terms on average 
greater than the known cancer genes. 

 
 

 
 
 
 
 
 
 
 

Fig. 6 Validation of method by GO term enrichment. 

 
3.6 Novel Candidate Cancer Genes  
Our screen resulted in a list of 1891 novel candidate genes 
(supplemental Table 3). Given the above validations of the 
maxlink score as an indicator of cancer relevance, it makes 
most sense to focus on those candidates with the most linked 
known cancer genes. The list contains 185 candidates with 10 
or more linked known cancer genes, and these should perhaps 
be seen as the most urgent targets for focused cancer studies. 
   To illustrate how a candidate cancer gene may be analyzed 
further, we chose an example, RPA1 ,which is a DNA-binding 
subunit of replication protein A. It was functionally coupled to 
34 known cancer genes (see Fig. 7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.FunCoup subnetwork of candidate cancer gene RPA1 surrounded 

by functionally coupled known cancer genes. RPA1 is the yellow circle, 

whereas the known cancer genes are colored/shaped according to KEGG 

pathway membership. Note that KEGG contains a relatively small number 

of cancer pathways; hence, most genes are not assigned to any pathway 
(gray balls). All green genes are from cancer pathways, however. The 

figure was made using the jSquid applet. 

   Can we predict what cancer type RPA1 is most likely to 
cause or be associated with? According to HPA, RPA1 is 
expressed in all cancer types and has differential (|DE| > 1) 
expression compared with normal in seven tissues (colorectal, 
endometrial, head and neck, pancreatic, skin, testis, and 
urothelial cancer). Thus, even if RPA1 may play a more 
prominent role in some cancers, it is likely to be a universal 
cancer gene. 
   The network neighbors of RPA1 have diverse differential 
expression patterns, supporting the notion that it is not 
specific for a certain type of cancer. In Fig. 7, the KEGG 
pathway membership of the neighbors is indicated. Although 
this gives a very incomplete picture because of the low 
coverage of KEGG for cancer (for instance, breast cancer is 
absent), it does reveal several cancer types such as colorectal 
and pancreatic. 
   A literature search revealed that in mice RPA1 has been 
shown to cause defects in DNA double strand break repair, 
which can lead to leukemia. This information is not present in 
UniProt.) In human, RPA1 is located in chromosomal region 
17p13.3, which has been implicated in e.g. colorectal and 
breast cancer. These cancers had strong support by DE in HPA 
for both RPA1 and its neighbors as well as from annotation of 
many of the neighbors. 
   Our analysis based on HPA expression, the gene 
subnetwork, and literature reinforces the connection between 
RPA1 and cancer, lending support for the cancer types 
associated with the RPA1 locus but suggesting that it may 
cause cancer in any tissue. Although it was one of the top 
ranking novel cancer gene candidates, there is no mention of 
any cancer association in UniProt or HPA. However, the 
presented evidences support that it plays a central role in 
tumorigenesis. 
 
4. DISCUSSION 
We have described a general network-based approach for 
identifying and ranking candidate novel genes relevant to a 
process or disease and have applied it to find novel cancer 
genes. The validations carried out show that the ranked list 
produced by our method is enriched for true cancer genes. 
   Cancer is in this study treated as one disease. This is 
obviously a simplification but is based on the notion that 
cancers originating in different tissues are often caused by 
perturbations in the same pathways, for instance DNA repair, 
cell cycle regulation, or apoptosis. It is supported by the fact 
that the network of known cancer genes only formed one large 
cluster (Fig. 1), which did not show very distinct subclusters. 
Also, Goh et al. showed that different cancers are often caused 
by the same genes. The attractiveness of this approach is that 
genes found in most cancers have a greater potential for 
diagnostic and therapeutic value. 
   Because of the modularity of the MaxLink pipeline, other 
diseases or processes can easily be investigated. A more 
traditional approach to disease gene hunting is linkage 
analysis where the gene associated with a disease is known to 
be found in a genomic interval that can contain in the order of 
a hundred genes. MaxLink could also be used to prioritize 
genes for such projects as long as a fair number of genes are 

http://www.mcponline.org/cgi/content/full/M900227-MCP200/DC1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860235/figure/F7/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860235/figure/F7/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860235/figure/F1/
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already known for the disease in question. The main 
advantage compared with other methods would be the 
richness of evidence integrated in the FunCoup links. For 
short lists, it may be necessary to lower the cutoff compared 
with this study to obtain a reasonable amount of links. 
   Many of our candidate genes were supported as cancer 
genes by the HPA database. However, even if a gene does not 
have differential cancer/normal expression in HPA, this does 
not disprove its potential implication in cancer. The protein 
level changes associated with the tumor progression may be 
too subtle to detect with the HPA technology. However, the 
predicted functional coupling to a cancer pathway is still 
valid, and the gene in question may well turn out to be a 
useful marker or therapeutic target. 
   The ―total differential expression‖ measure used here was 
only intended to investigate the validity of the MaxLink 
approach and not as a definite indicator of cancer relevance. 
Because we average across all cancer types, a gene 
differentially expressed in only one or a few cancer types 
might receive an unfairly low total DE value. 
   The main result of this study is the ranked list of novel 
cancer gene candidates. The 185 candidates connected to 10 or 
more known cancer genes are prime targets for new 
experiments that will lead the way to better understanding 
cancer. Some of the candidates with a lower maxlink score 
may also develop into important cancer biomarkers or targets, 
but there is a rationale for focusing on the high scoring genes. 
A high maxlink score is an indication that the candidate acts 
as a hub and plays a central role in the process and is more 
likely to be of widespread importance in many different 
tumors. On the other hand, such functions are typically also 
important for healthy tissue homeostasis and may be 
unsuitable as targets for inhibition. An exception to this would 
be hubs that act in parallel in healthy tissue but only one is 
functional in a tumor. Such a situation would make a hub an 
excellent cancer-specific drug target. 
 
5.SUPPLEMENTARY MATERIAL 
5.1Supplementary fig: 

 
 

 

5.2 SUPPLEMENTARY TABLE 1 
 
 
 

Ensembl 
ID 

Found in 
CGC 

UniProt 
SwissProt 
ID 

Uniprot CC 
field 
matches 

ensg0000
0002822 

 MD1L1_H
UMAN 

cancer 

ensg0000
0002834 

X LASP1_H
UMAN 

 

ensg0000
0003400 

 CASPA_H
UMAN 

cancer;cance
rs 

ensg0000
0004534 

 RBM6_HU
MAN 

cancer 

ensg0000
0004838 

 ZMY10_H
UMAN 

cancer 

ensg0000
0004948 

X CALCR_H
UMAN 

 

ensg0000
0005073 

X HXA11_H
UMAN 

onco 

ensg0000
0005339 

X CBP_HUM
AN 

leukemia;on
co 

ensg0000
0005893 

 LAMP2_H
UMAN 

tumor 

ensg0000
0005961 

 ITA2B_HU
MAN 

adenocarcin
oma;leukem
ia;carcinoma 

ensg0000
0006468 

X ETV1_HU
MAN 

 

ensg0000
0006704 

 GT2D1_H
UMAN 

retinoblasto
ma 

ensg0000
0006744 

 RNZ2_HU
MAN 

cancer 

ensg0000
0007237 

X GAS7_HU
MAN 

leukemia;on
co 

ensg0000
0007350 

 TKTL1_H
UMAN 

carcinomas;t
umors 

ensg0000
0007372 

 PAX6_HU
MAN 

tumor 

ensg0000
0008226 

 DLEC1_H
UMAN 

cancer;tumo
r;cancers 

ensg0000
0009709 

X PAX7_HU
MAN 

rhabdomyos
arcoma 

ensg0000
0010704 

 HFE_HUM
AN 

cancer 

ensg0000
0011052 

 NDKA_H
UMAN 

neuroblasto
ma;tumor;ca
rcinoma;tum
ors 

ensg0000
0012048 

X BRCA1_H
UMAN 

cancer 

ensg0000
0012061 

 ERCC1_H
UMAN 

onco 

ensg0000  SEM3B_H cancer 
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0012171 UMAN 
ensg0000
0012232 

 EXTL3_H
UMAN 

cancer 

ensg0000
0015285 

X WASP_HU
MAN 

 

ensg0000
0019549 

 SNAI2_HU
MAN 

onco 

ensg0000
0020922 

 MRE11_H
UMAN 

cancer;onco 

ensg0000
0023287 

 RBCC1_H
UMAN 

 

ensg0000
0023445 

X BIRC3_HU
MAN 

tumor;onco 

ensg0000
0025293 

 PHF20_H
UMAN 

glioblastoma
;cancer;carci
noma 

 

                               5.3 SUPPLEMENTARY TABLE 2   

 

     GO 
term 

Description Enrichment p GO 
class 

GO:00
32404 

mismatch 
repair complex 
binding 

45.9 4.97e-10 F 

GO:00
45005 

maintenance of 
fidelity during 
DNA-
dependent 
DNA 
replication 

30.6 1.14e-14 P 

GO:00
06298 

mismatch 
repair 

30.6 1.14e-14 P 

GO:00
00718 

nucleotide-
excision repair, 
DNA damage 
removal 

23.3 7.93e-10 P 

GO:00
03684 

damaged DNA 
binding 

16.5 2.81e-10 F 

GO:00
00079 

regulation of 
cyclin-
dependent 
protein kinase 
activity 

13.6 5.55e-11 P 

GO:00
42770 

DNA damage 
response, 
signal 
transduction 

10.8 9.60e-10 P 

GO:00
00075 

cell cycle 
checkpoint 

10.2 3.70e-12 P 

GO:00
51329 

interphase of 
mitotic cell 
cycle 

9.6 2.04e-12 P 

GO:00
07050 

cell cycle arrest 9.6 1.88e-10 P 

GO:00
03690 

double-
stranded DNA 
binding 

9.2 3.44e-10 F 

GO:00
43566 

structure-
specific DNA 
binding 

9.0 1.77e-14 F 

GO:00
51325 

interphase 9.0 1.42e-12 P 

GO:00
06281 

DNA repair 8.8 3.14e-24 P 

GO:00
06261 

DNA-
dependent 
DNA 
replication 

8.7 7.04e-10 P 

GO:00
34984 

cellular 
response to 
DNA damage 
stimulus 

8.2 1.60e-25 P 

GO:00
06974 

response to 
DNA damage 
stimulus 

8.0 3.12e-26 P 

GO:00
33554 

cellular 
response to 
stress 

6.9 8.78e-24 P 

GO:00
51716 

cellular 
response to 
stimulus 

6.9 2.77e-25 P 

GO:00
06913 

nucleocytoplas
mic transport 

6.8 5.29e-10 P 

GO:00
51169 

nuclear 
transport 

6.8 5.87e-10 P 

GO:00
09314 

response to 
radiation 

6.8 6.50e-10 P 

GO:00
51726 

regulation of 
cell cycle 

6.4 8.48e-17 P 

GO:00
08285 

negative 
regulation of 
cell 
proliferation 

6.3 1.01e-15 P 

GO:00
06260 

DNA 
replication 

6.1 5.58e-12 P 

GO:00
02520 

immune 
system 
development 

5.6 7.02e-11 P 

GO:00
16563 

transcription 
activator 
activity 

5.6 1.23e-15 F 

GO:00
22403 

cell cycle phase 5.6 1.00e-14 P 

GO:00
51094 

positive 
regulation of 
developmental 
process 

5.4 7.72e-20 P 

GO:00
43065 

positive 
regulation of 
apoptosis 

5.3 4.78e-14 P 

GO:00 induction of 5.2 1.68e-11 P 
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06917 apoptosis 
GO:00
43068 

positive 
regulation of 
programmed 
cell death 

5.2 5.98e-14 P 

GO:00
45595 

regulation of 
cell 
differentiation 

5.2 7.70e-10 P 

GO:00
12502 

induction of 
programmed 
cell death 

5.2 1.81e-11 P 

 

                             5.4 SUPPLEMENTARY TABLE 3   
 

Q-
links 

K-
links 

Other 
links 

ENSEMBL HGNC 
SYMBOL 

SWISSP
ROT 

55 232 387 ensg000001
32646 

PCNA P12004 

46 266 456 ensg000001
09606 

DHX15 O43143 

44 216 304 ensg000001
00297 

MCM5 P33992 

36 197 283 ensg000001
66508 

MCM7 P33993 

36 144 247 ensg000000
62822 

POLD1 P28340 

34 170 251 ensg000001
32383 

RPA1 P27694 

32 222 377 ensg000001
67088 

SNRPD1 P62314 

32 157 229 ensg000000
72501 

SMC1A Q14683 

31 129 207 ensg000001
68496 

FEN1 P39748 

30 189 290 ensg000001
64032 

H2AFZ P0C0S5 

29 242 376 ensg000001
05202 

FBL P22087 

29 155 204 ensg000001
43401 

ANP32E Q9BTT0 

29 129 204 ensg000001
17360 

PRPF3 O43395 

28 256 408 ensg000000
47315 

POLR2B P30876 

27 145 218 ensg000001
17748 

RPA2 P15927 

26 162 236 ensg000001
33119 

RFC3 P40938 

25 135 141 ensg000001
08424 

KPNB1 Q14974 

24 158 276 ensg000001
15484 

CCT4 P50991 

24 136 201 ensg000001
64104 

HMGB2 P26583 

24 129 207 ensg000000
92201 

SUPT16H
P 

Q9Y5B9 

24 126 200 ensg000001
36824 

SMC2 O95347 

24 117 208 ensg000000
14138 

POLA2 Q14181 

23 156 263 ensg000001
66226 

CCT2 P78371 

23 127 216 ensg000001
15942 

ORC2L Q13416 
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